Fast-adapting mechanoreceptors are important for force control in precision grip but not for sensorimotor memory.
نویسندگان
چکیده
Sensory feedback from cutaneous mechanoreceptors in the fingertips is important in effective object manipulation, allowing appropriate scaling of grip and load forces during precision grip. However, the role of mechanoreceptor subtypes in these tasks remains incompletely understood. To address this issue, psychophysical tasks that may specifically assess function of type I fast-adapting (FAI) and slowly adapting (SAI) mechanoreceptors were used with object manipulation experiments to examine the regulation of grip force control in an experimental model of graded reduction in tactile sensitivity (healthy volunteers wearing 2 layers of latex gloves). With gloves, tactile sensitivity decreased significantly from 1.9 ± 0.4 to 12.3 ± 2.2 μm in the Bumps task assessing function of FAI afferents but not in a grating orientation task assessing SAI afferents (1.6 ± 0.1 to 1.8 ± 0.2 mm). Six axis force/torque sensors measured peak grip (PGF) and load (PLF) forces generated by the fingertips during a grip-lift task. With gloves there was a significant increase of PGF (14 ± 6%), PLF (17 ± 5%), and grip and load force rates (26 ± 8%, 20 ± 8%). A variable-weight series task was used to examine sensorimotor memory. There was a 20% increase in PGF when the lift of a light object was preceded by a heavy relative to a light object. This relationship was not significantly altered when lifting with gloves, suggesting that the addition of gloves did not change sensorimotor memory effects. We conclude that FAI fibers may be important for the online force scaling but not for the buildup of a sensorimotor memory.
منابع مشابه
Neural basis for the processes that underlie visually guided and internally guided force control in humans.
Despite an intricate understanding of the neural mechanisms underlying visual and motor systems, it is not completely understood in which brain regions humans transfer visual information into motor commands. Furthermore, in the absence of visual information, the retrieval process for motor memory information remains unclear. We report an investigation where visuomotor and motor memory processes...
متن کاملDifferential fronto-parietal activation depending on force used in a precision grip task: an fMRI study.
Recent functional magnetic resonance imaging (fMRI) studies suggest that the control of fingertip forces between the index finger and the thumb (precision grips) is dependent on bilateral frontal and parietal regions in addition to the primary motor cortex contralateral to the grasping hand. Here we use fMRI to examine the hypothesis that some of the areas of the brain associated with precision...
متن کاملMechanisms for age-related changes of fingertip forces during precision gripping and lifting in adults.
We investigated changes across the adult life span of the fingertip forces used to grip and lift objects and their possible causes. Grip force, relative safety margin (grip force exceeding the minimum to avoid slip, as a fraction of slip force), and skin slipperiness increased beginning at age 50 years. Skin slipperiness explained relative safety margin increases until age 60 years. Hence, afte...
متن کاملSensorimotor memory for fingertip forces: evidence for a task-independent motor memory.
When repetitively lifting an object with randomly varying mechanical properties, the fingertip forces reflect the previous lift. We examined the specificity of this "sensorimotor memory" by observing the effects of an isolated pinch on the subsequent lift of a known object. In this case, the pinch force was unrelated to the fingertip forces necessary to grip the object efficiently. The peak gri...
متن کاملHow predictive is grip force control in the complete absence of somatosensory feedback?
Grip force control relies on accurate internal models of the dynamics of our motor system and the external objects we manipulate. Internal models are not fixed entities, but rather are trained and updated by sensory experience. Sensory feedback signals relevant object properties and mechanical events, e.g. at the skin-object interface, to modify motor commands and update internal representation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 115 6 شماره
صفحات -
تاریخ انتشار 2016